
MMTx_API
Documentation

For Release 2.3
Guy Divita

Table of Contents
Introduction
UMLS Metathesaurus Concepts
MMTx Overview
MMTxAPI
Simple MMTxAPI Examples
Container Classes filled in within the Tokenization Process
Container Classes filled in within the Tagger Client Process
Container Classes filled in within the Lexical Lookup Process
Container Classes filled in within the Noun Phrase Parser Process
Container Classes filled in within the Variant Generation Process
Container Classes filled in within the Candidate Retrieval/Evaluation Process
Container Classes filled in within the FinalMapping Process
Two Well Used Classes MmObject and Span
Entity Relationship Diagrams for the container classes
More MMTxAPI Examples
References

Introduction

MMTx maps text to UMLS Metathesaurus concepts. As part of this mapping process,

MMTx tokenizes text into sections, sentences, phrases, terms, and words. MMTx

maps the noun phrases of the text to the best matching UMLS concept or set of

concepts that best cover each phrase.

UMLS
Metathesaurus Concepts

A UMLS Metathesaurus Concept is a set of terms that roughly mean the same thing, That

is, a concept is a grouping of synonymous terms. One of the terms from each set of

synonymous terms is chosen as the label for the concept. We refer to this term as the

concept name. Each set of synonymous terms, or concept, is labeled with a unique

identifier, known as a concept unique identifier, also known as a cui, sometimes

pronounced as a “Cueie”

A UMLS Metathesaurus term, in turn, is really a grouping of strings that are lexical variants

of each other. These groupings include strings that differ by case, inflection, and

minor spelling and punctuation differences. Each grouping of strings in this way also

gets a unique identifier, a lexical unique identifier, or LUI, sometimes pronounced as

a “Lueie”. A representative from this grouping of strings is chosen as the term name.

A UMLS Metathesaurus string is text, or terms that comes from one or more Medical

controlled vocabularies. That is, a UMLS Metathesaurus string is a grouping of

logographically equivalent strings that come from one or more source medical

vocabularies. Each UMLS Metathesaurus string is labeled with a unique identifier, or

string unique identifier, also known as a SUI, sometimes pronounced as a “sueie” It

should be noted that there is no meaning associated with the strings. What gives these

strings meaning is what groups of terms they get assigned to. To make this point, a

string, such as the string “aids” is attached to three concepts, C0021588-Artificial

insemination by donor, C0001175-Acquired Immunodeficiency Syndrome, and

C0449435-Manufactured aid.

UMLS
Metathesaurus Concepts

Each UMLS Concept has been labeled with one or more UMLS Semantic Types. A UMLS

Semantic type is a category that comes from the UMLS Semantic Network. The

UMLS Semantic network is a rough or high level categorization of the medical

domain. The Semantic Network could be thought of as a surrogate for an upper level

domain ontology for medicine. The semantic network is composed of 135 semantic

types and 54 relationships binding them together. The primary link in the Network is

the "isa" link. This establishes the hierarchy of types within the Network and is used

for deciding on the most specific semantic type available for assignment to a

Metathesaurus concept. In addition, a set of non-hierarchical relations between the

types has been identified. These are grouped into five major categories, which are

themselves relations: "physically related to", "spatially related to", "temporally related

to", "functionally related to", and "conceptually related to".

The assigned UMLS Semantic Types associated with each concept are an aid to clarify

meaning and the context that the concept comes from.

This bit of background is needed to understand the magic behind MMTx. MMTx matches

phrases to the closest matching or best covering UMLS Metathesaurus Strings.

Because each UMLS Metathesaurus String is associated with one or more UMLS

Metathesaurus Concepts, MMTx retrieves the relevant concept and semantic type

information for later display.

http://www.nlm.nih.gov/research/umls/META3.HTML
http://www.nlm.nih.gov/research/umls/META3.HTML
http://www.nlm.nih.gov/research/umls/META3.HTML

MMTx Overview

MMTx passes text into tokenizer that tokenize the text

into sections containing sentences and sentences

containing word tokens.

The sentences can be passed to a part of speech tagger

client to have the part of speech tags from a

tagger matched up with and assigned to the word

tokens. MMTx does not have a part of speech

tagger, (hence the grayed out Tagger client box in

the diagram) but does include hooks to a tagger

via a programming interface.

The sentence’s word tokens are matched against terms

from the SPECIALIST Lexicon in the Lexical

Lookup module to combine the word tokens into

multi-word terms and retrieve their parts of

speech. The result are lexical elements that are

made up from the word tokens.

Sentences are passed to a noun phrase parser (or

chunker) to tokenize into phrases. The noun

phrase parser is a barrier category parser that uses

the part of speech categories from lexical

elements and the part of speech tags from a tagger

if used. The result are phrases that are made up of

the lexical elements. These phrases put into the

sentences they came from.

Document Tokenization

Noun Phrase
Parser

Variant
Generation

Candidate
Retrieval

Evaluation

Final Mapping

POS Tagger
Client

Lexical Lookup

Document

Sections

Sentences
PhrasesPhrases

Final
Mappings

UMLS_
Concepts

MMTx Overview
Variants, including synonyms, spelling, derivations,

inflections, acronym and abbreviations, acronym
and abbreviation expansions and recursive
combinations of these, are retrieved for the words
and lexical elements of each phrase in a variant
generation module. The result of this process are
phrases containing variants. Each variant is
marked with a cost or distance of how many
transformations it took to get from the original
form to the variant form.

Phrases and their variants are used to retrieve UMLS
Strings that match. The set of UMLS Strings that
match a phrase, or a variant of the phrase are
called candidates.

Candidates are are evaluated against each phrase based
on several criteria. The result of this step is a
score between 0 and 1000, with 1000 denoting an
exact match.

Concept and semantic type information is gathered for
each candidate. The result of this candidate
generation and evaluation step is a set of
UMLS_Concept_Pointer associated with each
phrase. Each UMLS_Concept_Pointer includes
an evaluation score, a set of
UMLS_String_Pointer, and a set of
UMLS_Semantic_Type_Pointer.

If the phrase was not completely covered by one
candidate UMLS String, combinations of
candidates are put together to best cover the
phrase in a final mapping module. The result of
this step is a set of Final_Mapping. Each
Final_Mapping includes the set of
UMLS_Concept_pointers pointing to the
concepts that best covers the phrase. Each
Final_Mapping also includes a final mapping
score.

Document Tokenization

POS Tagger
Client

Lexical Lookup

Noun Phase
Parser

Variant
Generation

Candidate
Retrieval

Evaluation

Final Mapping

Document

Sections

Sentences
PhrasesPhrases

Final
Mappings

UMLS_
Concepts

MMTxAPI

The MMTxAPI is the recommended way to embed MMTx within other applications. There

are methods to map text from an entire document along with methods to map a single term,

and many in between. This is an instance based class, to be instantiated once, with the

methods of this instance being called over and over again.

Options and settings are passed into the MMTxAPI via the

MMTx/config/MMTxRegistry.cfg configuration file, and via a String array containing

MMTx command line options.

MMTxAPI(String[] args)
This constructor takes a String[] that is filled with MMTx command line arguments. Options and
settings for the MMTxAPI are taken from the MMTx/config/MMTxRegistry.cfg file as well as the
command line arguments. The command line arguments override the configuration file settings.

MMTxAPI()
Constructor for MMTxAPI. This constructor takes no parameters. All MMTx Options and settings
are picked up from the MMTx/config/MMTxRegistry.cfg file.

Constructor Summary

MMTxAPI

Once instantiated, the instance takes as input either a container such as an already made

Document, Section or Sentence instance or a text. The methods that take the container

classes as input add to that same container. The methods that take text as input return a

container instance. .The container classes including Document, Sentence, and Phrase will

be covered in greater detail after the simple examples.

MMTxAPI
MMTxAPI()
MMTxAPI(String[] args)

void processDocument (Document pDocument)
Document processDocument (File pFile)
Document processDocument (String pDocumentText)
Void processSection (Section pSection)
void processSentence (Sentence pSentence)
Sentence processSentence (String pSentenceText)
Sentence processString (String pString, boolean pTermProcessing)
void processStringAux (Sentence pSentence, boolean pTermProcessing)
Phrase processTerm (String pTerm)

MMTxAPI Simple Examples

Suppose you have a term, sentence or document already in hand and would like to retrieve

the best mapping to UMLS Concepts for it. This is a common use of MMTx. The

forthcoming examples, MMTxAPI methods are shown to map from a term, a sentence

or a document. The full versions of these programs can be found in the

MMTx/examples directory of the distribution. Note that not all the classes have been

introduced. The details of those yet to be defined classes come after these examples.

A few implementation details need to be gotten out of the way to get these programs

working.

Each of these programs need to import the following packages. These imports are not shown in
the examples that follow due to space and clarity considerations

import java.util.*;
import java.io.*;

import gov.nih.nlm.nls.utils.U; // - --------------------

Import gov.nih.nlm.nls.nlp.textfeatures.*; // - Included in MMTx.jar

import gov.nih.nlm.nls.MMTx.MMTxAPI; // - --------------------

Imports

The classpath needs to include the MMTx installation's config directory and the path to the
MMTx.jar file. For example:
java -cp "/nls/MMTx/config;/nls/MMTx/lib/MMTxProject.jar" MMTxTermExample

Classpath

MMTxAPI Term Example

This program creates a new MMTxApi instance, then uses the processTerm method with a

string parameter. This method returns an analized phrase that includes final mappings

and UMLS concept references. Here we are printing out the analysis with an example

method that demonstrates how me might get at various pieces of information on the

analysis and print it. It should be noted that there are a number of formatting methods

on each of the container classes. We could have minimialistically used the method

aPrhase.toString() to print out the contents of the analysis.

// =======================================+ Create a MMTxAPI object +==

MMTxAPI MMTx = new MMTxAPI();

// ==+ Analyze the Term +==

Phrase aPhrase = MMTx.processTerm("sleep disorders");

String phraseString = displayPhrase(aPhrase);

System.out.println(phraseString);

MMTxAPI Term Example

This method demonstrates itterating through and printing out each final map. A final map is

a combination one or more UMLS Metathesaurus concepts that best covers or maps to

the phrase. This will be explained in greater detail in a subsequent section. In this

example, we are relying on the FinalMapping's toString() method to print out some

reasonable output.

// ===================================+ Display Phrase and Concepts +==

String displayPhrase(Phrase aPhrase) throws Exception {

// ==+ Get the Mappings +==

List finalMappings = aPhrase.getFinalMappings();

if (finalMappings != null) {

Iterator mappingIterator = finalMappings.iterator();

// ================================+ Iterate through the Mappings +==

while (mappingIterator.hasNext()) {

FinalMapping aMapping = (FinalMapping) mappingIterator.next();

System.out.println(aMapping);

}

}

}

MMTxAPI Sentence Example

This example shows the existence of a processSentence method. If your input was a bunch

of already determined sentences, this method would analyze them without having to

create a document. An instance of the container class sentence is returned from the

processSentence method. There are methods to traverse through the components of a

sentence, as in this example, the getPhrases() method.

// ===+ Create a MMTxAPI object +==

MMTxAPI MMTx = new MMTxAPI();

// ==+ Analyze the Sentence +==

Sentence aSentence = MMTx.processSentence("Insomnia is a symptom of a sleep
disorder");

Iterator phraseIterator = aSentence.getPhrases().iterator() ;

// =======================================+ Iterate through the Phrases +==

while (phraseIterator.hasNext()) {

Phrase aPhrase = (Phrase) phraseIterator.next();

System.out.println(displayPhrase(aPhrase));

}

MMTxAPI Document Example

This example demonstrates one of the ways to process a document. There is a

processDocument method that takes a FILE instance as a parameter.

There exists a processDocument method that takes a String as a parameter

as well. These methods return an analyzed document via an instance of

the container class Document. Note that there is a convenience class off

the document class that returns all the phrases from the document.

// ==+ Get a document +==
File aFile = new File("example.txt");

// ===+ Create a MMTxAPI object +==
MMTxAPI MMTx = new MMTxAPI();

// ==+ Analyze the Document +==
Document aDocument = MMTx.processDocument(aFile);
Iterator phraseIterator = aDocument.getPhrases().iterator() ;

// =======================================+ Iterate through the Phrases +==
while (phraseIterator.hasNext()) {
Phrase aPhrase = (Phrase) phraseIterator.next();

System.out.println(displayPhrase(aPhrase));

}

Container Classes
and Processes

This section describes MMTx's Container classes by describing how MMTx uses and populates

these classes when you call one of the process methods:

processDocument

processSentence

processString

processTerm

Container Classes
[filled in within the Tokenization Process]

Document,Section,Sentence …

Section

Section
Name

Sentence

Token
Chunk

Document

During the tokenization process, input text is transformed into an instance of a Document

class. A Document is further tokenized into sections. When dealing with unstructured

documents, sections are paragraphs. When dealing with MEDLINE Citations, each

citation section, such as the Title section, the Author section, the abstract section equates

to a separate section. The tokenizer considers a number of HTML tags including <p>,

<tr>, <h1> with sections when dealing with HTML input. Sections can be labeled. For

instance it might be useful to know that the section at hand is a title section. Each section

contains a set of sentences. Each Sentence contains a number of containers but only the

chunk and [word] token containers are filled out during this tokenization process.

Document Tokenization

Container Classes
[filled in within the Tokenization Process]

Sentence,Chunk,Token

Sentence

Original String: 1.24 units were lost leaving 0.74 units

Number
chunk

Chunk Number
chunk

Chunk

1.24 units were lost leaving 0.74 units

1 . units were st l 0 .24 lo eaving 74 units

Each sentence is sent through a shape tokenizer to grab chunks of text that can be identified as

a contiguous unit by some pattern recognition software. Chunks include dates, urls,

emails, real numbers and similar patterns. Chunks are currently identified by a small set

of compiled regular expressions. Those chunks that get identified are labeled. The text

around the labeled chunks are also made into chunks, but without a label. Each chunk is

then tokenized into word tokens. Those chunks that are labeled become shapes or

lexicalElements with a Shape label during the lexical lookup process, and do not get

otherwise looked up in the lexicon.

In the above example, the sentence is broken into 4 chunks, two labeled, and two unlabeled.

The chunks shown contain the initial instances of the tokens associated with the sentence.

It should be noted that a container referencing these tokens is created on each sentence.

(Shown in the prior figure)

Chunks are an interim container that are no longer referenced after lexicalElements are made.

The lexicalElements carry on the chunk labels.

Container Classes
[filled in within the Tagger Client Process]

Token

TokenTokenTokenization

POS Tagger
Client

Token

Tagger's
Part Of Speech

Sentence

Document

If a tagger client has been implemented and used*, the tagger client process will align the

output from the tagger with each [word] token from each sentence, and deposit the

tagger's part of speech on each token. This part of speech is useful during the noun phrase

parsing process to disambiguate words that have multiple parts of speech.

* We currently only have one tagger client implemented for the an internal server around a

Xerox Parc Part of Speech Tagger. We cannot distribute the server nor can we distribute

the part of speech tagger. Therefore, this tagger client is turned off for external users. It is

being provided as an example of how to implement other part of speech tagger clients.

Lexical Element

Token Token Lexical
Entry

Container Classes
[filled in within the Lexical Lookup Process]
LexicalElement, LexicalEntry

Sentence

ChunkDocument Tokenization

POS Tagger
Client

Lexical Lookup

The Lexical Lookup process iterates through the chunks. The tokens from each labeled chunk

become the tokens of a new LexicalElement. Lexical Elements that are created from

labeled chunks include patterns include dates, numbers, and money. The tokens of the

unlabeled chunks are used to identify and match to multi-word terms from the

SPECIALIST Lexicon. Those matched terms are made into new instances of a Lexical

Element which holds those tokens that make up the term. Lexical Elements are added to

each sentence during this Lexical Lookup process. Lexical Elements that come from the

Lexicon contain additional syntactic information from the Lexicon in a container holding

LexicalEntries. Each LexicalEntry corresponds to an entry in the SPECIALIST Lexicon..

The tokens contained within each LexicalElement are not new instances, but are

references to the tokens that were created during the tokenization process.

Container Classes
[filled in within the Noun Phrase Parser Process]

Phrase

Token

Lexical
Element

Token

Token

Phrase

Lexical
Element

Sentence

Document Tokenization

POS Tagger
Client

Lexical Lookup

The Noun Phrase Parser Process combines lexical elements into a set of Phases. Each Phrase

contains a set of references to those LexicalElements created during the Lexical Lookup

process.

Noun Phase
Parser

Container Classes
[filled in within the Variant Generation Process]

Derived Phrase

Derived
Phrase

Phrase

Document Tokenization Lexical
Element

POS Tagger
Client

Lexical Lookup

The Variant Generation process adds derived phrases to the phrase. Derived phrases are

composed of permutations of variants of the lexical elements of the phrase. These

variants include a recursive combination of spelling variants, synonyms, derivations,

acronyms acronym expansions, and the inflections of each. The set of derived phrases

are added each phrase. Derived phrases are internal to MMTx and it is not envisioned

that they are useful toAPI developers. They are being covered here to show what the

variant generation process does.

Noun Phase
Parser

Variant
Generation

Container Classes
[filled in within the Candidate Retrieval/Evaluation Process]

UMLS_ConceptPointer,UMLS_StringPointer, UMLS_SemanticTypePointer

UMLS_ConceptPointer

score

UMLS_
StringPointer

UMLS_
Semantic_Type

Pointer

score

Phrase

Lexical
Element

Variant
Generation

Derived
Phrase

Candidate
Retrieval

Evaluation

The phrase and derived phrases are used as the elements to match against indexes into the

Metathesaurus during the candidate retrieval process. Those UMLS strings that come

back are put into UMLS_StringPointers. The UMLS concept information is also

gathered for these UMLS_Strings. The semantic type information is gathered for the

UMLS concepts. The UMLS_Strings are subsequently put into UMLS_ConceptPointers.

The set of UMS_ConceptPointers are added to the phrase.

During the evaluation process, each UMLS_StringPointer is evaluated as to how well it

matches the phrase. This score is added to each UMLS_StringPointer. The best of these

string scores become the UMLS_ConceptPointer's score. The set of

UMLS_ConceptPointers are sorted by score in descending order.

As an aside, UMLS_ConceptPointer and UMLS_StringPointers are labeled as such to make the

distinction that these classes don't include all the data associated with UMLS Strings and

Concepts and they also include scores that only make sense in the context of a phrase.

Container Classes
[filled in within the FinalMapping Process]

FinalMapping

FinalMapping

score

UMLS_
ConceptPointer

UMLS_
ConceptPointer

PhraseCandidate
Retrieval

Evaluation

During the final mapping process, combinations of UMLS_ConceptPointers are grouped to

best cover the the contents of the phrase. Each final mapping contains references to the

UMLS_ConceptPointers that were created in the retrieval and evaluation process. Each

final mapping is evaluated as to how well the combination of concepts cover the phrase.

This score is added to each final mapping. The set of final mappings are added to each

phrase.

There are applications where you want a set of closest matching concepts, not final mappings.

In such cases, such as during term processing, the set of UMLS_ConceptPointers off the

phrase is more appropriate. This set is an ordered set of concepts sorted in descending

order by the evaluation score.

Final Mapping

Two Well Used Classes
MmObject and Span

MmObject

id

originalString

trimmedString

strippedString

Span

Span

beginChar

endChar

wordPosition

beginToken

endToken

LexicalElementPosition

phraseLexicalElementPosition

phraseWordPosition

phrasePosition

sentencePosition

There are two well used classes within the NLP Tools and MMTx, MmObject and Span.

The MmObject class is inherited by just about every other textfeature class from Document on

down to the tokens. Instances of MmObject all contain an Id, the original string, and a span.

MmObjects also contain variants of the original string including a space trimmed string, and a

punctuation stripped version of the string.

A span object contains the book keeping to tie this object back to the original document. A span

contains character and word offsets that are relative to the document, and offsets that are

relative to the phrase. It goes without saying that the phrase offsets are not set until phrases are

created during the parsing phase, and the LexicalElementPositions are not set until the

LexicalLookup phase.

Entity Relationship Diagram
for the

textfeature package

Sentence

Section

Document

Lexical
Element

FinalMapping

UMLS_Concept
Pointer

UMLS_String
Pointer

UMLS_Semantic
TypePointer

One to Many
Relationship

Phrase

TokenChunk

Lexical
Entry

MmObject Class

MmObject

void appendOriginalString(java.lang.String pContent)
int getCharOffset()
int getId()

Span getSpan()
String getStrippedString()
String getTrimmedString()
void setId(int id)
void setOriginalString(java.lang.String origString)
void setSpan(int pBeginChar, int pEndChar)
void setStrippedString()
void setTrimmedString()
void toString()

String getOriginalString()

Span Class

Span

int getBeginCharacter()
int getBeginToken()
int getBeginWord()
int getEndCharacter()
int getEndToken()
int getEndWord()
int getLexicalElementPosition()
int getNumberOfCharacters()
int getPhraseLexicalElementPosition()
int getPhrasePosition()
int getPhraseWordPosition()
int getSentencePosition()
int getWordPosition()
String toString()

void setBeginCharacter(int beginCharIndex)
void setBeginToken(int pPos)
void setEndCharacter(int endCharIndex)
void setEndToken(int pPos)
void setLexicalElementPosition(int pPos)
void setPhraseLexicalElementPosition(int pPos)
void setPhrasePosition(int pPos)
void setPhraseWordPosition(int pPos)
void setSentencePosition(int pPos)
void setSpan(int pBeginChar, int pEndChar)
void setTokenPosition(int pStartPos, int pEndPos)
void setWordPosition(int pPos)
void setWordSpan(int pBeginWord, int pEndWord)

Span()
Span(int pStartChar, int pEndChar)
Span(Span pSpan)

Span (continued)

Document Class

Document

List getPhrases()
List getSections()
List getSentences()
List getTokens()
String toPipedString()
String toString()

Section Class

Section

List getDerivedPhrases()
String getDocumentTag()
List getPhrases()
String getSectionName()
List getSentences()
String getTag()
boolean shouldBeProcessed()
String toPipedString()
String toString()

Sentence Class

Sentence

int getCtr()
List getLexicalElements()
List getPhrases()
List getTokens()
String toPipedString()
String toString()

Chunk Class

Chunk

Token Class

Token
static String tokensToString()
int getLexicalElementNumber()
List getLexicalEntries()
Span getPhraseSpan()
int getPhraseTokenPosition()
int getPossibleCategories()
int getPOSTag()
String getTokenType()
int getWordPosition()
boolean isPunctuation()
boolean partOfHead()
String toPipedString()
String toString()

Lexical Element Class
LexicalEntry Class

Lexical
Element

Lexical
Entry

boolean doesThisInflect()
String getDeterminedLexiconString()
int getDistance()
String getHistory()
int getLexicalElementPosition()
List getLexicalEntries()
Span getPhraseCharSpan()
int getPhraseLexicalElementPosition()
Span getPhraseWordSpan()
int getPOSCategory()
int getPossibleCategories()
int getShapeType()
int getTaggerCategory()
List getTokens()
int getType()
boolean isHead()
boolean isShape()
String toPipedString()
String toTaggedString()
String toString()

String getBaseForm()
int getPossibleCategory()
String getCitationForm()
String getEui()
String getInflectedForm()
int getInflection()
String getInflectionString()
List getTokens()
boolean isHead()
boolean isSpellingVariant()
String toPipedString()
String toTaggedString()
String toString()

One to Many
Relationship

Phrase Class

Phrase Phrase (cont.)
String displayTags()
String displayVariants()
List getAllVariants()
UMLS_ConceptPointer getConceptPointer()
UMLS_ConceptPointer[] getConcepts()
List getDerivedPhrases()
ArrayList getFinalMappings()
List getLexicalElements()
List getNp()
String getNpString()
List getNpTokens()
String getOriginalString()

int getPhrasePosition()
int getSizeOfPhrase()
String getTrimmedString()
boolean isOfPhrase()
boolean isPrepPhrase()
String toMincoManString()
String toMoString()
String toPipedString()
String toString()
String toSyntaxString()

FinalMapping Class

FinalMapping
ArrayList getConcepts()
int getScore()
String toMetaMapString()
String toPipedString()
String toString()

UMLS_ConceptPointer Class

UMLS_ConceptPointer

static String convertCui(int pCuiHash)
String getCUI()
String getConceptName()
int getCUIHash()
int getScore()
int[] getTuis()
UMLS_SemanticTypePointer[] getUMLS_SemanticTypes()
List getUMLS_Strings()
String toAMPipedString()
String toMetaMapString()
String toPipedString()
String toString()

UMLS_StringPointer Class

UMLS_StringPointer
static String convertSui(int pSuiHash)
int[] getCuis
String getName()
String getNormalizedString()
String getSUI()
int getSUIHash()
int getScore()
String toPipedString()
String toString()

UMLS_SemanticTypePointer Class

UMLS_SemanticTypePointer
String getAbbr()
String getSemanticTypeName()
String getTUI()
String toPipedString()
String toString()

MMTxAPI Example

This example calls MMTx.processDocument() in the same way the simple example did.

This example retrieves all the sentences and iterates through them rather than

retrieving the the phrases directly.

…

// ==========================+ Analyze the file +==

Document aDocument = MMTx.processDocument(aFile);

List sentences = aDocument.getSentences() ;
String sentence = null;

int numberOfSentences = sentences.size();

String sentenceString = null;

// =====================+ Print the Sentences out +==

for (int i = 0; i < numberOfSentences; i++) {

aSentence = (Sentence) sentences.get(i);

sentenceString = displaySentence(aSentence);

System.out.println(sentenceString);

} // End of Loop through sentences

MMTxAPI Example
displaySentence()

DisplaySentence() retrieves the sentence's piped string, grabs all the phrases and retrieves

each of the phrases display information.

String displaySentence(Sentence pSentence) throws Exception {

StringBuffer buff = new StringBuffer();

buff.append(pSentence.toPipedString());
//Sentence|id|start|end|TrimmedString|

buff.append(U.NL);

List phrases = pSentence.getPhrases() ;

int numberOfPhrases = phrases.size();

Phrase aPhrase = null;

String phraseString = null;

for (int i = 0; i < numberOfPhrases; i++) {

aPhrase = (Phrase) phrases.get(i);

phraseString = displayPhrase(aPhrase);

buff.append(phraseString);

} // End of Loop through phrases

return (buff.toString());

} // *** End displaySentence()

MMTxAPI Example
displayPhrase()

DisplayPhrase() retrieves the phrases's piped string, grabs mappings and retrieves each of

the mapping's display information. We could call the aMapping. toMetaMapString()

here, but that we wrote our own displayMapping() here to demonstrate that we can

control the output.

String displayPhrase(Phrase pPhrase) throws Exception {

StringBuffer buff = new StringBuffer();

buff.append(pPhrase.toPipedString());

buff.append(U.NL);

ArrayList finalMappings = pPhrase.getFinalMappings() ;

FinalMapping aMapping = null;

String mappingString = null;

int numberOfFinalMappings = finalMappings.size();

for (int i = 0; i < numberOfFinalMappings; i++) {

aMapping = (FinalMapping) finalMappings.get(i);

mappingString = displayMapping(aMapping);

buff.append(mappingString);

} // End of Loop through Mappings

return (buff.toString());

} // *** End displayPhrase()

MMTxAPI Example
displayMapping()

DisplayMapping() retrieves the mapping's concepts and retrieves each of the concept's

display information.

String displayMapping(FinalMapping pMapping) throws Exception {

StringBuffer buff = new StringBuffer();

ArrayList concepts = pMapping.getConcepts() ;

UMLS_ConceptPointer aConcept = null;

String umls_Strings = null;

int numberOfConcepts = concepts.size();

for (int i = 0; i < numberOfConcepts; i++) {

aConcept = (UMLS_ConceptPointer) concepts.get(i);

buff.append(aConcept.toPipedString());

umls_Strings = displayUMLS_Strings(aConcept);

buff.append(umls_Strings);

} // End of Loop through Concepts

return (buff.toString());

} // *** End displayMapping()

MMTxAPI Example
displayUMLS_Strings()

DisplayUMLS_Strings() retrieves the concept's UMLS strings (Alternatively, the interfaces

of UMLS_Concept Pointer and UMLS_StringPointer provide other formatting

options.)

String displayUMLS_Strings(UMLS_ConceptPointer pConcept) throws
Exception {

StringBuffer buff = new StringBuffer();

ArrayList umlsStrings = pConcept.getUMLS_Strings() ;

UMLS_StringPointer aString = null;

String stringName = null;

String sui = null;

int stringScore = null;

int numberOfUMLSStrings = umlsStrings.size();

for (int i = 0; i < numberOfUMLSStrings; i++) {

aString = (UMLS_StringPointer) umlsStrings.get(i);

stringName = aString.getName();

sui = aString.getSUI();

stringScore = aString.getScore();

buff.append(sui + "|" + stringName + "|" + stringScore + U.NL);

} // End of Loop through Strings

return (buff.toString());

} // *** End displayUMLS_Strings()

Adding Shape Identifiers
[during the Tokenization Process]

Additional labeled chunks can be added to the tokenizer by adding additional regular

expressions to the shapeTokenizer. A strong caution should be given though to note that

pattern recognition via regular expressions become extremely slow as the number of

regular expressions increases.

The shapeTokenizer could be altered to plug in additional black boxes that create additional

labeled chunks.You might want to do this to identify chemicals, drugs, gene names, or

proper names.

This is done by adding additional methods to the ShapeTokenizer's public Vector

shapeTokenize(Vector pChunks) method. Each additional method should take as an

input a Vector of Chunk. The method should split an existing chunk into a new labeled

chunk if one is found, new unlabeled chunks of the text surrounding the labeled chunk,

and otherwise leave unaltered chunks that it does not find a pattern in. The method should

alter the Vector of Chunks to include any of the new chunks created in the appropriate

place within the Vector. The method should not tokenize into words the newly created

chunks, as the word tokenization happens after all chunks are identified.

It is the current philosophy that once a chunk gets labeled, no other identifier should bother

looking at it. This is being done solely for simplification purposes. We do not know how

to handle overlapping chunks, or nested chunks. As a consequence, the order of pattern

matchers employed matters, with the first ones employed being the first to segment and

label the text to the exclusion of later shape identifiers. It is realized that this may change

down the road, for instance, to be able to combine chunks into a chunk like recognizing

that a number chunk and a unit of measure chunk could be combined into one unit of

measure chunk.

Adding Shape Identifiers
[during the Tokenization Process]

Each Chunk should be created with the following information:

The string that makes up the chunk, a label from the Chunk class, and the character span

relative to the sentence. The first two are parameters passed in to the Chunk class's

constructor. The setSpan() method is needed to set the character span of this chunk within

the sentence.

[Example chunk here]

MMTx Settable Options

The MMTxAPI has the same settable options that MMTx has. These options are set via the

MMTx command line arguments as well as settings from the

$MMTx/config/MMTxRegistry.cfg file.

Any entry in the MMTxRegistry file could be a command line argument to MMTx. This

next section will elucidate the elements within the MMTxRegistry file.

References

This page is a placeholder for UMLS Metathesaurus semantic network, and MetaMap

references. It is also a placeholder for links to useful additional information.

• umlsLex.nlm.nih.gov

– SPECIALIST NLP Tools

• MMTx.nlm.nih.gov *

* The MMTx website and documentation is public. The download requires a UMLS

license.

Appendix

MMTxAPIExample1.java
MMTxAPIExample2.java
example.txt

	MMTx_API Documentation
	Table of Contents
	Introduction
	UMLS Metathesaurus Concepts
	UMLS Metathesaurus Concepts
	MMTx Overview
	MMTx Overview
	MMTxAPI
	MMTxAPI
	MMTxAPI Simple Examples
	MMTxAPI Term Example
	MMTxAPI Term Example
	MMTxAPI Sentence Example
	MMTxAPI Document Example
	Container Classes and Processes
	Container Classes [filled in within the Tokenization Process]Document,Section,Sentence …
	Container Classes [filled in within the Tagger Client Process]Token
	Container Classes [filled in within the Lexical Lookup Process]LexicalElement, LexicalEntry
	Container Classes [filled in within the Noun Phrase Parser Process]Phrase
	Container Classes [filled in within the Variant Generation Process]Derived Phrase
	Container Classes [filled in within the Candidate Retrieval/Evaluation Process]UMLS_ConceptPointer,UMLS_StringPointer, UMLS
	Container Classes [filled in within the FinalMapping Process]FinalMapping
	Two Well Used ClassesMmObject and Span
	Entity Relationship Diagram for the textfeature package
	MmObject Class
	Span Class
	Document Class
	Section Class
	Sentence Class
	Chunk Class
	Token Class
	Lexical Element ClassLexicalEntry Class
	Phrase Class
	FinalMapping Class
	UMLS_ConceptPointer Class
	UMLS_StringPointer Class
	UMLS_SemanticTypePointer Class
	MMTxAPI Example
	MMTxAPI ExampledisplaySentence()
	MMTxAPI ExampledisplayPhrase()
	MMTxAPI ExampledisplayMapping()
	MMTxAPI ExampledisplayUMLS_Strings()
	MMTx Settable Options
	References
	Appendix

